Einstieg in Deep Reinforcement Learning
KI-Agenten mit Python und PyTorch programmieren
Hanser
ISBN 978-3-446-46609-8
Standardpreis
Bibliografische Daten
eBook. ePub
2020
Umfang: 400 S.
Verlag: Hanser
ISBN: 978-3-446-46609-8
Produktbeschreibung
- Praktischer Einsatz mit PyTorch
- Projekte umsetzen
Dieses Buch zeigt Ihnen, wie Sie Agenten programmieren, die basierend auf direktem Feedback aus ihrer Umgebung selbstständig lernen und sich dabei verbessern. Sie werden Netzwerke mit dem beliebten PyTorch-Deep-Learning-Framework aufbauen, um bestärkende Lernalgorithmen zu erforschen. Diese reichen von Deep-Q-Networks über Methoden zur Gradientenmethode bis hin zu evolutionären Algorithmen.
Im weiteren Verlauf des Buches wenden Sie Ihre Kenntnisse in praktischen Projekten wie der Steuerung simulierter Roboter, der Automatisierung von Börsengeschäften oder dem Aufbau eines Spiel-Bots an.
Aus dem Inhalt:
- Strukturierungsprobleme als Markov-Entscheidungsprozesse
- Beliebte Algorithmen wie Deep Q-Networks, Policy Gradient-Methode und Evolutionäre Algorithmen und die Intuitionen, die sie antreiben
- Anwendung von Verstärkungslernalgorithmen auf reale Probleme
Autorinnen und Autoren
Produktsicherheit
Hersteller
Carl Hanser Verlag GmbH & Co.KG
Vilshofener Straße 10
81679 München, DE
info@hanser.de
BÜCHER VERSANDKOSTENFREI INNERHALB DEUTSCHLANDS

