Enhancing LLM Performance
Efficacy, Fine-Tuning, and Inference Techniques
Springer
ISBN 978-3-031-85746-1
Standardpreis
Bibliografische Daten
Fachbuch
Buch. Hardcover
2025
4 s/w-Abbildungen, 33 Farbabbildungen.
In englischer Sprache
Umfang: xvii, 183 S.
Format (B x L): 15,5 x 23,5 cm
Verlag: Springer
ISBN: 978-3-031-85746-1
Weiterführende bibliografische Daten
Das Werk ist Teil der Reihe: Machine Translation: Technologies and Applications
Produktbeschreibung
This book is more than just a technical guide; it bridges the gap between research and real-world applications. Each chapter presents cutting-edge advancements in inference optimization, model architecture, and fine-tuning techniques, all designed to enhance the usability of LLMs in diverse sectors. Readers will find extensive discussions on the practical aspects of implementing and deploying LLMs in real-world scenarios. The book serves as a comprehensive resource for researchers and industry professionals, offering a balanced blend of in-depth technical insights and practical, hands-on guidance. It is a go-to reference book for students, researchers in computer science and relevant sub-branches, including machine learning, computational linguistics, and more.
Autorinnen und Autoren
Kundeninformationen
Presents practical solutions to the growing challenges of training and deploying these massive models Offers practical solutions for deploying LLMs in industries, such as health care, advertising, and conversational AI Covers cutting-edge methods to enhance LLM performance, including inference acceleration and model optimization
Produktsicherheit
Hersteller
Springer Nature Customer Service Center GmbH
ProductSafety@springernature.com
BÜCHER VERSANDKOSTENFREI INNERHALB DEUTSCHLANDS

