Elements of Deep Learning
Springer
ISBN 978-3-032-10737-4
Standardpreis
Bibliografische Daten
Fachbuch
Buch. Hardcover
2026
72 s/w-Abbildungen, 75 Farbabbildungen.
Umfang: xii, 461 S.
Format (B x L): 17,8 x 25,4 cm
Verlag: Springer
ISBN: 978-3-032-10737-4
Produktbeschreibung
Balancing mathematical rigor with hands-on practice, Elements of Deep Learning emphasizes both theoretical depth and real-world application. Different theories are introduced with PyTorch-based code examples, helping readers to translate theory into implementation. Organized into five sections—fundamentals, sequence models, generative models, emerging topics, and practice—the text provides a unified roadmap for mastering modern deep learning.
Designed for advanced undergraduates, graduate students, instructors, and professionals in engineering, computer science, mathematics, and related fields, this book serves both as a primary course text and a reliable reference. With minimal prerequisites in linear algebra and calculus, it offers accessible explanations while equipping readers with practical tools for applications in vision, language, signal processing, healthcare, and beyond.
Autorinnen und Autoren
Produktsicherheit
Hersteller
Springer Nature Customer Service Center GmbH
Europaplatz 3
69115 Heidelberg, DE
ProductSafety@springernature.com
BÜCHER VERSANDKOSTENFREI INNERHALB DEUTSCHLANDS
