Bhasin

Hands-on Deep Learning

A Guide to Deep Learning with Projects and Applications

Apress

ISBN 9798868810343

Standardpreis


ca. 64,19 €

lieferbar ca. 10 Tage als Sonderdruck ohne Rückgaberecht

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

auch verfügbar als eBook (PDF) für 64,99 €

Bibliografische Daten

Fachbuch

Buch. Softcover

2024

191 s/w-Abbildungen.

In englischer Sprache

Umfang: xx, 364 S.

Format (B x L): 17,8 x 25,4 cm

Verlag: Apress

ISBN: 9798868810343

Produktbeschreibung

This book discusses deep learning, from its fundamental principles to its practical applications, with hands-on exercises and coding. It focuses on deep learning techniques and shows how to apply them across a wide range of practical scenarios. The book begins with an introduction to the core concepts of deep learning. It delves into topics such as transfer learning, multi-task learning, and end-to-end learning, providing insights into various deep learning models and their real-world applications. Next, it covers neural networks, progressing from single-layer perceptrons to multi-layer perceptrons, and solving the complexities of backpropagation and gradient descent. It explains optimizing model performance through effective techniques, addressing key considerations such as hyperparameters, bias, variance, and data division. It also covers convolutional neural networks (CNNs) through two comprehensive chapters, covering the architecture, components, and significance of kernels implementing well-known CNN models such as AlexNet and LeNet. It concludes with exploring autoencoders and generative models such as Hopfield Networks and Boltzmann Machines, applying these techniques to a diverse set of practical applications. These applications include image classification, object detection, sentiment analysis, COVID-19 detection, and ChatGPT. By the end of this book, you will have gained a thorough understanding of deep learning, from its fundamental principles to its innovative applications, enabling you to apply this knowledge to solve a wide range of real-world problems. What You Will Learn - What are deep neural networks? - What is transfer learning, multi-task learning, and end-to-end learning? - What are hyperparameters, bias, variance, and data division? - What are CNN and RNN?

Autorinnen und Autoren

Kundeninformationen

Provides explanations on sequence models and their analysis using various datasets Covers generative models and transformers, demonstrating their applications Provides hands-on projects that guide you in understanding the processes of model creation, fine-tuning, and testing

Produktsicherheit

Hersteller

Springer Nature Customer Service Center GmbH

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • nach oben

      Ihre Daten werden geladen ...