Zhou / Fang / Shi

Federated Edge Learning

Algorithms, Architectures and Trustworthiness

Springer

ISBN 978-3-031-96648-4

Standardpreis


171,19 €

Jetzt vorbestellen! Wir liefern bei Erscheinen (Erscheint vsl. September 2025)

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

Bibliografische Daten

Fachbuch

Buch. Hardcover

2025

4 s/w-Abbildungen, 35 Farbabbildungen.

In englischer Sprache

Umfang: xvi, 187 S.

Format (B x L): 15,5 x 23,5 cm

Verlag: Springer

ISBN: 978-3-031-96648-4

Weiterführende bibliografische Daten

Das Werk ist Teil der Reihe: Wireless Networks

Produktbeschreibung

This book present various effective schemes from the perspectives of algorithms, architectures, privacy, and security to enable scalable and trustworthy Federated Edge Learning (FEEL). From the algorithmic perspective, the authors elaborate various federated optimization algorithms, including zeroth order, first-order, and second-order methods. There is a specific emphasis on presenting provable convergence analysis to illustrate the impact of learning and wireless communication parameters.

The convergence rate, computation complexity and communication overhead of the federated zeroth/first/second-order algorithms over wireless networks are elaborated. From the networking architecture perspective, the authors illustrate how the critical challenges of FEEL can be addressed by exploiting different architectures and designing effective communication schemes. Specifically, the communication straggler issue of FEEL can be mitigated by reconfiguring the propagation environment. By utilizing reconfigurable intelligent and unmanned aerial vehicle, while over-the-air computation is utilized to support ultra-fast model aggregation for FEEL, by exploiting the waveform superposition property. Additionally, the multi-cell architecture presents a feasible solution for collaborative FEEL training among multiple cells. Finally, the authors discuss the challenges of FEEL from the privacy and security perspective, followed by presenting effective communication schemes that can achieve differentially private model aggregation and Byzantine-resilient model aggregation to achieve trustworthy FEEL.

This book is designed for advanced-level students majoring in computer science and electrical engineering as a secondary text. Researchers and professionals working in wireless communications will also find this book useful as a reference.

Autorinnen und Autoren

Produktsicherheit

Hersteller

Springer Nature Customer Service Center GmbH

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • nach oben

      Ihre Daten werden geladen ...