Zhang / Tang / Kang

Moving Target Defense Based on Artificial Intelligence

Springer

ISBN 9789819506149

Standardpreis


ca. 53,49 €

Jetzt vorbestellen! Wir liefern bei Erscheinen (Erscheint vsl. Oktober 2025)

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

Bibliografische Daten

Fachbuch

Buch. Softcover

2025

2 s/w-Abbildungen, 27 Farbabbildungen.

In englischer Sprache

Umfang: XI, 110 S.

Format (B x L): 15.5 x 23.5 cm

Verlag: Springer

ISBN: 9789819506149

Weiterführende bibliografische Daten

Das Werk ist Teil der Reihe: SpringerBriefs in Computer Science

Produktbeschreibung

Moving Target Defense (MTD) has been proposed as an innovative defense framework, which aims to introduce the dynamics, diversity and randomization into static network by the shuffling, heterogeneity and redundancy. It is born to solve the problem that traditional security solutions respond and defend against security threats after attacks occurrence, which will lead to the defender always having disadvantages in attack-defense confrontation. This book explores the challenges and solutions related to moving target defense in the cloud-edge-terminal networks.

This book fills this gap by providing a comprehensive and detailed approach to designing intelligent MTD frameworks for cloud-edge-terminal networks. It is essential reading for researchers and professionals in network security and artificial intelligence who seek innovative defense solutions.

The book is organized into 6 chapters, each addressing a key area of MTD and its integration with Artificial Intelligence. Chapter 1 introduces the fundamental concepts of MTD, security challenges in cloud-edge-terminal networks, and the role of artificial intelligence in enhancing MTD. Chapter 2 delves into host address mutation based on advantage actor-critic approach. Chapter 3 proposes a collaborative mutation-based MTD based on hierarchical reinforcement learning. Chapter 4 presents roadside units configuration mutation based on proximal policy optimization approach. Chapter 5 explores route mutation based on multiagent reinforcement learning. Chapter 6 provides a summary of insights and lessons learned throughout the book and outlines future research directions in MTD.

Autorinnen und Autoren

Produktsicherheit

Hersteller

Springer Nature Customer Service Center GmbH

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • nach oben

      Ihre Daten werden geladen ...