Zamanifar / Taherkordi / Farhadi

Explainable Large Language Models in Healthcare Applications

Springer

ISBN 978-3-032-15087-5

Standardpreis


ca. 181,89 €

Jetzt vorbestellen! Wir liefern bei Erscheinen (Erscheint vsl. Juli 2026)

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

Bibliografische Daten

Fachbuch

Buch. Hardcover

2026

2 s/w-Abbildungen, 2 Farbabbildungen.

Umfang: xx, 210 S.

Format (B x L): 15,5 x 23,5 cm

Verlag: Springer

ISBN: 978-3-032-15087-5

Weiterführende bibliografische Daten

Das Werk ist Teil der Reihe: Bio-IT and AI

Produktbeschreibung

This is a comprehensive book that explores how explainable artificial intelligence (XAI), particularly large language models (LLMs), is transforming healthcare. The book covers foundational concepts of XAI, emphasizing the need for transparency, accountability, and interpretability in AI-driven medical systems, that are crucial for clinician and patient trust. It examines the principles and methodologies in explainable AI. It details how LLMs can make complex machine learning outputs understandable through explanations, model design, and human-centered description. Part of the book is dedicated to real-world applications, such as disease diagnosis, treatment planning, and patient management. It demonstrates how XAI improves clinical decision-making and patient outcomes. It discusses the integration of explainable LLMs into electronic health records (EHRs) and clinical workflows. It shows how these technologies facilitate data analysis, improve documentation, and support care. The book also addresses the challenges and limitations of deploying explainable LLMs in healthcare. It includes issues of privacy, data complexity, and adapting models to specific domains. Evaluation techniques for explainability are discussed, with attention to metrics, benchmarks, and human-centered assessment methods that ensure AI explanations are both accurate and clinically relevant. Ethical considerations, such as fairness, accountability, and privacy, are discussed. We highlight the importance of balancing transparency with patient confidentiality. The book provides case studies and empirical evidence illustrating the benefits and challenges of implementing XAI in real clinical settings.

Autorinnen und Autoren

Produktsicherheit

Hersteller

Springer Nature Customer Service Center GmbH

Europaplatz 3
69115 Heidelberg, DE

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • nach oben

      Ihre Daten werden geladen ...