Ergodic Theory
A Probabilistic Approach to Dynamical Systems
Springer
ISBN 978-3-032-08835-2
Standardpreis
Bibliografische Daten
Fachbuch
Buch. Hardcover
2026
10 s/w-Abbildungen.
Umfang: XVII, 184 S.
Format (B x L): 15.5 x 23.5 cm
Verlag: Springer
ISBN: 978-3-032-08835-2
Weiterführende bibliografische Daten
Das Werk ist Teil der Reihe: Modern Aspects of Electrochemistry
Produktbeschreibung
Part I (Chapters 1–7) lays the foundation, covering invariant measures, measure-theoretic isomorphisms, ergodicity, mixing, entropy, and culminating in the Shannon–McMillan–Breiman Theorem.
Part II (Chapters 8–13) shifts focus to continuous maps of metric spaces, exploring the collection of invariant measures corresponding to a given map.
Part III (Chapters 14–16) presents advanced topics rarely found in textbooks at this level, including SRB measures, their deep connection to entropy and Lyapunov exponents, and extensions to two important settings: random and infinite-dimensional dynamical systems.
Throughout, the authors emphasize not only the mathematical elegance of ergodic theory but also its practical relevance and rich connections to other areas of mathematics, from information theory to stochastic processes.
Autorinnen und Autoren
Produktsicherheit
Hersteller
Springer Nature Customer Service Center GmbH
ProductSafety@springernature.com
BÜCHER VERSANDKOSTENFREI INNERHALB DEUTSCHLANDS
