Automated Analysis of the Oximetry Signal to Simplify the Diagnosis of Pediatric Sleep Apnea
From Feature-Engineering to Deep-Learning Approaches
Springer Nature Switzerland
ISBN 978-3-031-32834-3
Standardpreis
Bibliografische Daten
Fachbuch
Buch. Softcover
2024
1 s/w-Abbildung, 17 Farbabbildungen, Bibliographien.
In englischer Sprache
Umfang: 108 S.
Format (B x L): 15.5 x 23.5 cm
Gewicht: 178
Verlag: Springer Nature Switzerland
ISBN: 978-3-031-32834-3
Produktbeschreibung
Autorinnen und Autoren
Kundeninformationen
Nominated as an outstanding PhD thesis by the Bioengineering Group of Comité Español de Automática Reports on novel feature engineering and deep learning approaches applied to overnight oximetry Describes a novel strategy for the automated screening of pediatric sleep apnea
Produktsicherheit
Hersteller
Springer-Verlag GmbH
Tiergartenstr. 17
69121 Heidelberg, DE
ProductSafety@springernature.com