Unsupervised Feature Extraction Applied to Bioinformatics
A PCA Based and TD Based Approach
2., Second Edition 2024
Springer Nature Switzerland
ISBN 978-3-031-60982-4
Standardpreis
Bibliografische Daten
eBook. PDF
2., Second Edition 2024. 2024
XXII, 533 p. 243 illus., 211 illus. in color..
In englischer Sprache
Umfang: 533 S.
Verlag: Springer Nature Switzerland
ISBN: 978-3-031-60982-4
Weiterführende bibliografische Daten
Das Werk ist Teil der Reihe: Engineering Unsupervised and Semi-Supervised Learning Engineering (R0)
Produktbeschreibung
This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics.
- Allows readers to analyze data sets with small samples and many features;
- Provides a fast algorithm, based upon linear algebra, to analyze big data;
- Includes several applications to multi-view data analyses, with a focus on bioinformatics.
Autorinnen und Autoren
Produktsicherheit
Hersteller
Springer-Verlag GmbH
Tiergartenstr. 17
69121 Heidelberg, DE
ProductSafety@springernature.com