Sutton

Domain Generalization with Machine Learning in the NOvA Experiment

Springer

ISBN 978-3-031-43582-9

Standardpreis


160,49 €

lieferbar ca. 10 Tage als Sonderdruck ohne Rückgaberecht

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

auch verfügbar als eBook (PDF) für 160,49 €

Bibliografische Daten

Fachbuch

Buch. Hardcover

2023

10 s/w-Abbildungen, 63 Farbabbildungen, Bibliographien.

In englischer Sprache

Umfang: xi, 170 S.

Format (B x L): 15,5 x 23,5 cm

Gewicht: 448

Verlag: Springer

ISBN: 978-3-031-43582-9

Weiterführende bibliografische Daten

Das Werk ist Teil der Reihe: Springer Theses

auch verfügbar als eBook (PDF) für 160,49 €

Produktbeschreibung

This thesis presents significant advances in the use of neural networks to study the properties of neutrinos. Machine learning tools like neural networks (NN) can be used to identify the particle types or determine their energies in detectors such as those used in the NOvA neutrino experiment, which studies changes in a beam of neutrinos as it propagates approximately 800 km through the earth. NOvA relies heavily on simulations of the physics processes and the detector response; these simulations work well, but do not match the real experiment perfectly. Thus, neural networks trained on simulated datasets must include systematic uncertainties that account for possible imperfections in the simulation. This thesis presents the first application in HEP of adversarial domain generalization to a regression neural network. Applying domain generalization to problems with large systematic variations will reduce the impact of uncertainties while avoiding the risk of falselyconstraining the phase space. Reducing the impact of systematic uncertainties makes NOvA analysis more robust, and improves the significance of experimental results.

Autorinnen und Autoren

Kundeninformationen

Nominated as an outstanding thesis by the University of Virginia, USA Reviews the history and physics of the neutrino Shows how domain generalization can reduce the impact of uncertainties in HEP experiments

Produktsicherheit

Hersteller

Springer Nature Customer Service Center GmbH

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • nach oben

      Ihre Daten werden geladen ...