Stanimirovi¿ / Wei / Li

Generalized Matrix Inversion: A Machine Learning Approach

Springer

ISBN 978-3-032-01492-4

Standardpreis


213,99 €

Jetzt vorbestellen! Wir liefern bei Erscheinen (Erscheint vsl. November 2025)

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

Bibliografische Daten

Fachbuch

Buch. Hardcover

2025

In englischer Sprache

Umfang: XXIV, 338 S.

Format (B x L): 15.5 x 23.5 cm

Verlag: Springer

ISBN: 978-3-032-01492-4

Produktbeschreibung

This book presents a comprehensive exploration of the dynamical system approach in numerical linear algebra, with a special focus on computing generalized inverses, solving systems of linear equations, and addressing linear matrix equations. Bridging four major scientific domains—numerical linear algebra, recurrent neural networks (RNNs), dynamical systems, and unconstrained nonlinear optimization—this book offers a unique, interdisciplinary perspective.

Generalized Matrix Inversion: A Machine Learning Approach explores the theory and application of recurrent neural networks, particularly continuous-time recurrent neural networks (CTRNNs), which use systems of ordinary differential equations to model the influence of inputs on neurons. Special attention is given to CTRNNs designed for finding zeros of equations or minimizing nonlinear functions, with detailed coverage of two important classes: Gradient Neural Networks (GNN) and Zhang (Zeroing) Neural Networks (ZNN). Both time-varying and time-invariant models are examined across scalar, vector, and matrix cases.

Based on the authors’ research that has been published in leading scientific journals, the book spans a variety of disciplines, including linear and multilinear algebra, generalized inverses, recurrent neural networks, dynamical systems, time-varying problem solving, and unconstrained nonlinear optimization. Readers will find a global overview of activation functions, rigorous convergence analysis, and innovative improvements in the definition of error functions for GNN and ZNN dynamic systems.

Generalized Matrix Inversion: A Machine Learning Approach is an essential resource for researchers and practitioners seeking advanced methods at the intersection of machine learning, optimization, and matrix computation.

Autorinnen und Autoren

Produktsicherheit

Hersteller

Springer Nature Customer Service Center GmbH

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • nach oben

      Ihre Daten werden geladen ...