Data Science in Cybersecurity and Cyberthreat Intelligence
Springer Nature Switzerland
ISBN 978-3-030-38788-4
Standardpreis
Bibliografische Daten
eBook. PDF. Weiches DRM (Wasserzeichen)
2020
XII, 129 p. 45 illus., 25 illus. in color..
In englischer Sprache
Umfang: 129 S.
Verlag: Springer Nature Switzerland
ISBN: 978-3-030-38788-4
Weiterführende bibliografische Daten
Das Werk ist Teil der Reihe: Intelligent Systems Reference Library
Produktbeschreibung
This book presents a collection of state-of-the-art approaches to utilizing machine learning, formal knowledge bases and rule sets, and semantic reasoning to detect attacks on communication networks, including IoT infrastructures, to automate malicious code detection, to efficiently predict cyberattacks in enterprises, to identify malicious URLs and DGA-generated domain names, and to improve the security of mHealth wearables. This book details how analyzing the likelihood of vulnerability exploitation using machine learning classifiers can offer an alternative to traditional penetration testing solutions. In addition, the book describes a range of techniques that support data aggregation and data fusion to automate data-driven analytics in cyberthreat intelligence, allowing complex and previously unknown cyberthreats to be identified and classified, and countermeasures to be incorporated in novel incident response and intrusion detection mechanisms.
Autorinnen und Autoren
Produktsicherheit
Hersteller
Springer-Verlag GmbH
Tiergartenstr. 17
69121 Heidelberg, DE
ProductSafety@springernature.com
BÜCHER VERSANDKOSTENFREI INNERHALB DEUTSCHLANDS

