Structural Pattern Recognition using Graph Matching
Approximate and Error-Tolerant Algorithms
Taylor & Francis Ltd
ISBN 978-1-03-285034-4
Standardpreis
Bibliografische Daten
Buch. Hardcover
2025
54 s/w-Abbildungen, 1 s/w-Foto, 53 s/w-Zeichnungen, 20 s/w-Tabelle.
In englischer Sprache
Umfang: 230 S.
Format (B x L): 15.6 x 23.4 cm
Verlag: Taylor & Francis Ltd
ISBN: 978-1-03-285034-4
Produktbeschreibung
• Begins with the fundamentals of graph theory, graph matching algorithms, and structural pattern recognition concepts and explains the principles, methodologies, and practical implementations
• Presents relevant case studies and hands-on examples across chapters to guide making informed decisions by graph matching
• Discusses various graph-matching algorithms, including exact and approximate methods, geometric methods, spectral techniques, graph kernels, and graph neural networks, including practical examples to illustrate the strengths and limitations of each approach
• Showcases the versatility of graph matching in real-world applications, such as image analysis, biological molecule identification, object recognition, social network clustering, and recommendation systems
• Describes deep learning models for graph matching, including graph convolutional networks (GCNs) and graph neural networks (GNNs)
Autorinnen und Autoren
Produktsicherheit
Hersteller
Libri GmbH
Europaallee 1
36244 Bad Hersfeld, DE
gpsr@libri.de