Machine Learning with Quantum Computers
2., Second Edition 2021
Springer Nature Switzerland
ISBN 978-3-030-83098-4
Standardpreis
Bibliografische Daten
eBook. PDF. Weiches DRM (Wasserzeichen)
2., Second Edition 2021. 2021
XIV, 312 p. 104 illus., 74 illus. in color..
In englischer Sprache
Umfang: 312 S.
Verlag: Springer Nature Switzerland
ISBN: 978-3-030-83098-4
Weiterführende bibliografische Daten
Das Werk ist Teil der Reihe: Quantum Science and Technology Physics and Astronomy Physics and Astronomy (R0)
Produktbeschreibung
This book offers an introduction into quantum machine learning research, covering approaches that range from "near-term" to fault-tolerant quantum machine learning algorithms, and from theoretical to practical techniques that help us understand how quantum computers can learn from data. Among the topics discussed are parameterized quantum circuits, hybrid optimization, data encoding, quantum feature maps and kernel methods, quantum learning theory, as well as quantum neural networks. The book aims at an audience of computer scientists and physicists at the graduate level onwards.
The second edition extends the material beyond supervised learning and puts a special focus on the developments in near-term quantum machine learning seen over the past few years.
Autorinnen und Autoren
Produktsicherheit
Hersteller
Springer-Verlag GmbH
Tiergartenstr. 17
69121 Heidelberg, DE
ProductSafety@springernature.com
BÜCHER VERSANDKOSTENFREI INNERHALB DEUTSCHLANDS

