Schreyer

An Introduction to Algebraic Geometry

A Computational Approach

Springer Nature Switzerland

ISBN 978-3-031-84834-6

Standardpreis


64,19 €

sofort lieferbar!

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

auch verfügbar als Buch (Softcover) für 64,19 €

Bibliografische Daten

eBook. PDF

2025

XIII, 302 p..

In englischer Sprache

Umfang: 302 S.

Verlag: Springer Nature Switzerland

ISBN: 978-3-031-84834-6

Weiterführende bibliografische Daten

Das Werk ist Teil der Reihe: Universitext

auch verfügbar als Buch (Softcover) für 64,19 €

Produktbeschreibung

Algebraic Geometry is a huge area of mathematics which went through several phases: Hilbert's fundamental paper from 1890, sheaves and cohomology introduced by Serre in the 1950s, Grothendieck's theory of schemes in the 1960s and so on. This book covers the basic material known before Serre's introduction of sheaves to the subject with an emphasis on computational methods. In particular, we will use Gröbner basis systematically.

The highlights are the Nullstellensatz, Gröbner basis, Hilbert's syzygy theorem and the Hilbert function, Bézout's theorem, semi-continuity of the fiber dimension, Bertini's theorem, Cremona resolution of plane curves and parametrization of rational curves.

In the final chapter we discuss the proof of the Riemann-Roch theorem due to Brill and Noether, and give its basic applications.The algorithm to compute the Riemann-Roch space of a divisor on a curve, which has a plane model with only ordinary singularities, use adjoint systems. The proof of the completeness of adjoint systems becomes much more transparent if one use cohomology of coherent sheaves. Instead of giving the original proof of Max Noether, we explain in an appendix how this easily follows from standard facts on cohomology of coherent sheaves.

The book aims at undergraduate students. It could be a course book for a first Algebraic Geometry lecture, and hopefully motivates further studies.

Autorinnen und Autoren

Produktsicherheit

Hersteller

Springer-Verlag GmbH

Tiergartenstr. 17
69121 Heidelberg, DE

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • Produktempfehlungen personalisieren

      Ihre Vorteile:

      • Empfehlungen basierend auf ihren Interessen
      • Zeitersparnis durch passende Vorschläge

      Mehr informationen zu , , und

      Die ersten personalisierten Empfehlungen erhalten Sie nach zwei bis drei Klicks.

      Sie können diese Zustimmung zu einem späteren Zeitpunkt unproblematisch über die Datenschutz-Einstellungen wieder zurückziehen.

      nach oben

      Ihre Daten werden geladen ...