Classification Functions for Machine Learning and Data Mining
Springer Nature Switzerland
ISBN 978-3-031-35347-5
Standardpreis
Bibliografische Daten
eBook. PDF
2023
XIII, 144 p. 45 illus., 26 illus. in color..
In englischer Sprache
Umfang: 144 S.
Verlag: Springer Nature Switzerland
ISBN: 978-3-031-35347-5
Weiterführende bibliografische Daten
Das Werk ist Teil der Reihe: Synthesis Lectures on Digital Circuits & Systems
Produktbeschreibung
This book introduces a novel perspective on machine learning, offering distinct advantages over neural network-based techniques. This approach boasts a reduced hardware requirement, lower power consumption, and enhanced interpretability. The applications of this approach encompass high-speed classifications, including packet classification, network intrusion detection, and exotic particle detection in high-energy physics. Moreover, it finds utility in medical diagnosis scenarios characterized by small training sets and imbalanced data. The resulting rule generated by this method can be implemented either in software or hardware. In the case of hardware implementation, circuit design can employ look-up tables (memory), rather than threshold gates.
Autorinnen und Autoren
Produktsicherheit
Hersteller
Springer-Verlag GmbH
Tiergartenstr. 17
69121 Heidelberg, DE
ProductSafety@springernature.com