Sandfeld

Materials Data Science

Introduction to Data Mining, Machine Learning, and Data-Driven Predictions for Materials Science and Engineering

Springer

ISBN 978-3-031-46564-2

Standardpreis


96,29 €

lieferbar ca. 10 Tage als Sonderdruck ohne Rückgaberecht

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

auch verfügbar als eBook (PDF) für 69,54 €

Bibliografische Daten

Fachbuch

Buch. Hardcover

2024

200 Farbabbildungen.

In englischer Sprache

Umfang: xxvi, 618 S.

Format (B x L): 15,5 x 23,5 cm

Verlag: Springer

ISBN: 978-3-031-46564-2

Produktbeschreibung

This text covers all of the artificial intelligence, deep learning, and data science topics relevant to materials science and engineering, accompanied by numerous examples and applications. The book begins with a concise introduction to statistics and probabilities, explaining important concepts and definitions such as probability functions and distributions, sampling and data preparation, Bayes’ theorem, and statistical significance testing in the context of materials science. As such it is a useful introduction for both undergraduate and graduate students as well as a refresher for research scientists and practicing engineers. The second part is a detailed description of (statistical) machine learning and deep learning. It considers a range of supervised and unsupervised methods including multi-output regression, random forests, time series prediction, and clustering as well as a number of different deep learning networks such as convolutional neural networks, auto-encoder, or generative adversarial networks. The degree of detail and theory is such that all methods can be understood and critically discussed, and it is reinforced by extensive examples within materials science and engineering. The final part considers six complex applications and advanced topics of machine learning and data mining in materials science and engineering. A comprehensive appendix is included, summarizing the most important statistical and mathematical techniques. - Introduces machine learning/deep learning methods in detail based on examples and data from materials science; - Covers all theoretical foundations in an accessible manner, tailored to materials scientists and engineers; - Maximizes intuitive understanding with materials science and physics examples, coding exercises, and online material.

Autorinnen und Autoren

Kundeninformationen

Introduces machine learning/deep learning methods in detail based on examples and data from materials science Covers all theoretical foundations in an accessible manner, tailored to materials scientists and engineers Maximizes intuitive understanding with materials science and physics examples, coding exercises, and online material

Produktsicherheit

Hersteller

Springer Nature Customer Service Center GmbH

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • nach oben

      Ihre Daten werden geladen ...