Materials Informatics III
Polymers, Solvents and Energetic Materials
Springer International Publishing
ISBN 978-3-031-78724-9
Standardpreis
Bibliografische Daten
eBook. PDF
2025
XV, 371 p. 108 illus., 42 illus. in color..
In englischer Sprache
Umfang: 371 S.
Verlag: Springer International Publishing
ISBN: 978-3-031-78724-9
Weiterführende bibliografische Daten
Das Werk ist Teil der Reihe: Challenges and Advances in Computational Chemistry and Physics
Produktbeschreibung
This contributed volume focuses on the application of machine learning and cheminformatics in predictive modeling for organic materials, polymers, solvents, and energetic materials. It provides an in-depth look at how machine learning is utilized to predict key properties of polymers, deep eutectic solvents, and ionic liquids, as well as to improve safety and performance in the study of energetic and reactive materials. With chapters covering polymer informatics, quantitative structure-property relationship (QSPR) modeling, and computational approaches, the book serves as a comprehensive resource for researchers applying predictive modeling techniques to advance materials science and improve material safety and performance.
Autorinnen und Autoren
Produktsicherheit
Hersteller
Springer Nature Customer Service Center GmbH
ProductSafety@springernature.com