Materials Informatics II
Software Tools and Databases
Springer International Publishing
ISBN 978-3-031-78728-7
Standardpreis
Bibliografische Daten
eBook. PDF
2025
XVI, 297 p. 102 illus., 95 illus. in color..
In englischer Sprache
Umfang: 297 S.
Verlag: Springer International Publishing
ISBN: 978-3-031-78728-7
Weiterführende bibliografische Daten
Das Werk ist Teil der Reihe: Challenges and Advances in Computational Chemistry and Physics
Produktbeschreibung
This contributed volume explores the application of machine learning in predictive modeling within the fields of materials science, nanotechnology, and cheminformatics. It covers a range of topics, including electronic properties of metal nanoclusters, carbon quantum dots, toxicity assessments of nanomaterials, and predictive modeling for fullerenes and perovskite materials. Additionally, the book discusses multiscale modeling and advanced decision support systems for nanomaterial risk management, while also highlighting various machine learning tools, databases, and web platforms designed to predict the properties of materials and molecules. It is a comprehensive guide and a great tool for researchers working at the intersection of machine learning and material sciences.
Autorinnen und Autoren
Produktsicherheit
Hersteller
Springer Nature Customer Service Center GmbH
ProductSafety@springernature.com