Explainable and Interpretable Reinforcement Learning for Robotics
Springer
ISBN 978-3-031-47520-7
Standardpreis
Bibliografische Daten
Fachbuch
Buch. Softcover
2025
1 s/w-Abbildung, 13 Farbabbildungen.
In englischer Sprache
Umfang: xv, 114 S.
Format (B x L): 16,8 x 24 cm
Verlag: Springer
ISBN: 978-3-031-47520-7
Weiterführende bibliografische Daten
Das Werk ist Teil der Reihe: Synthesis Lectures on Artificial Intelligence and Machine Learning
Produktbeschreibung
The authors consider classification techniques used in past surveys and papers and attempt to unify terminology across the field. The book provides an in-depth exploration of 12 attributes that can be used to classify explainable/interpretable techniques. These include whether the RL method is model-agnostic or model-specific, self-explainable or post-hoc, as well as additional analysis of the attributes of scope, when-produced, format, knowledge limits, explanation accuracy, audience, predictability, legibility, readability, and reactivity. The book is organized around a discussion of these methods broken down into 42 categories and subcategories, where each category can be classified according to some of the attributes. The authors close by identifying gaps in the current research and highlighting areas for future investigation.
Autorinnen und Autoren
Produktsicherheit
Hersteller
Springer Nature Customer Service Center GmbH
Europaplatz 3
69115 Heidelberg, DE
ProductSafety@springernature.com
BÜCHER VERSANDKOSTENFREI INNERHALB DEUTSCHLANDS

