Discrete Stochastic Processes
Tools for Machine Learning and Data Science
Springer International Publishing
ISBN 978-3-031-65820-4
Standardpreis
Bibliografische Daten
eBook. PDF
2024
XII, 288 p. 144 illus., 130 illus. in color..
In englischer Sprache
Umfang: 288 S.
Verlag: Springer International Publishing
ISBN: 978-3-031-65820-4
Weiterführende bibliografische Daten
Das Werk ist Teil der Reihe: Springer Undergraduate Mathematics Series
Produktbeschreibung
This text presents selected applications of discrete-time stochastic processes that involve random interactions and algorithms, and revolve around the Markov property. It covers recurrence properties of (excited) random walks, convergence and mixing of Markov chains, distribution modeling using phase-type distributions, applications to search engines and probabilistic automata, and an introduction to the Ising model used in statistical physics. Applications to data science are also considered via hidden Markov models and Markov decision processes. A total of 32 exercises and 17 longer problems are provided with detailed solutions and cover various topics of interest, including statistical learning.
Autorinnen und Autoren
Produktsicherheit
Hersteller
Springer Nature Customer Service Center GmbH
ProductSafety@springernature.com