Embedding Knowledge Graphs with RDF2vec
Springer International Publishing
ISBN 978-3-031-30387-6
Standardpreis
Bibliografische Daten
eBook. PDF
2023
IX, 158 p. 43 illus., 27 illus. in color..
In englischer Sprache
Umfang: 158 S.
Verlag: Springer International Publishing
ISBN: 978-3-031-30387-6
Weiterführende bibliografische Daten
Das Werk ist Teil der Reihe: Synthesis Lectures on Data, Semantics, and Knowledge
Produktbeschreibung
This book explains the ideas behind one of the most well-known methods for knowledge graph embedding of transformations to compute vector representations from a graph, known as RDF2vec. The authors describe its usage in practice, from reusing pre-trained knowledge graph embeddings to training tailored vectors for a knowledge graph at hand. They also demonstrate different extensions of RDF2vec and how they affect not only the downstream performance, but also the expressivity of the resulting vector representation, and analyze the resulting vector spaces and the semantic properties they encode.
Autorinnen und Autoren
Produktsicherheit
Hersteller
Springer Nature Customer Service Center GmbH
ProductSafety@springernature.com