Noonan / Zhigljavsky

High-Dimensional Optimization

Set Exploration in the Non-Asymptotic Regime

Springer

ISBN 978-3-031-58908-9

Standardpreis


53,49 €

lieferbar ca. 10 Tage als Sonderdruck ohne Rückgaberecht

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

auch verfügbar als eBook (PDF) für 48,14 €

Bibliografische Daten

Fachbuch

Buch. Softcover

2024

2 s/w-Abbildungen, 159 Farbabbildungen.

In englischer Sprache

Umfang: xi, 143 S.

Format (B x L): 15,5 x 23,5 cm

Verlag: Springer

ISBN: 978-3-031-58908-9

Weiterführende bibliografische Daten

Das Werk ist Teil der Reihe: SpringerBriefs in Optimization

auch verfügbar als eBook (PDF) für 48,14 €

Produktbeschreibung

This book is interdisciplinary and unites several areas of applied probability, statistics, and computational mathematics including computer experiments, optimal experimental design, and global optimization. The bulk of the book is based on several recent papers by the authors but also contains new results. Considering applications, this brief highlights multistart and other methods of global optimizations requiring efficient exploration of the domain of optimization. This book is accessible to a wide range of readers; the prerequisites for reading the book are rather low, and many numerical examples are provided that pictorially illustrate the main ideas, methods, and conclusions.

The main purpose of this book is the construction of efficient exploration strategies of high-dimensional sets. In high dimensions, the asymptotic arguments could be practically misleading and hence the emphasis on the non-asymptotic regime. An important link with global optimization stems from the observation that approximate covering is one of the key concepts associated with multistart and other key random search algorithms. In addition to global optimization, important applications of the results are computer experiments and machine learning.

It is demonstrated that the asymptotically optimal space-filling designs, such as pure random sampling or low-discrepancy point nets, could be rather inefficient in the non-asymptotic regime and the authors suggest ways of increasing the efficiency of such designs. The range of techniques ranges from experimental design, Monte Carlo, and asymptotic expansions in the central limit theorem to multivariate geometry, theory of lattices, and numerical integration.

This book could be useful to a wide circle of readers, especially those specializing in global optimization, numerical analysis, computer experiments, and computational mathematics. As specific recipes for improving set exploration schemes are formulated, the book can also be used by the practitioners interested in applications only.





Autorinnen und Autoren

Kundeninformationen

A thorough discussion on the properties and geometrical features of high-dimensional sets Results on the rate of convergence of a wide class of stochastic global optimization algorithms Detailed study of non-asymptotic properties of different space-filling and covering schemes

Produktsicherheit

Hersteller

Springer Nature Customer Service Center GmbH

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • nach oben

      Ihre Daten werden geladen ...