Neve

Reciprocal Recommender Systems

Springer Nature Switzerland

ISBN 978-3-031-85103-2

Standardpreis


53,49 €

sofort lieferbar!

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

auch verfügbar als Buch (Softcover) für 53,49 €

Bibliografische Daten

eBook. PDF. Weiches DRM (Wasserzeichen)

2025

XI, 107 p..

In englischer Sprache

Umfang: 107 S.

Verlag: Springer Nature Switzerland

ISBN: 978-3-031-85103-2

Weiterführende bibliografische Daten

Das Werk ist Teil der Reihe: SpringerBriefs in Computer Science

auch verfügbar als Buch (Softcover) für 53,49 €

Produktbeschreibung

This book provides an introduction to reciprocal recommendation. It starts with theory, and then moves on to concrete examples of the most successful algorithms in the field. Researchers and developers with a little background in machine learning will find many of the algorithms are straightforward to implement, and code samples are included to help with this.

In addition to accessible algorithms, the book also examines some more cutting-edge research such as the recent interest in applying matching theory to reciprocal recommendation. These parts will be of interest both to developers who are looking to optimize their systems, and to researchers who might find avenues to further advance the field and develop new methods of recommending people to people.

By the end of this book, the reader will have a comprehensive understanding of the state of the art in reciprocal recommendation and will be equipped to design and implement their own systems.

Autorinnen und Autoren

Produktsicherheit

Hersteller

Springer-Verlag GmbH

Tiergartenstr. 17
69121 Heidelberg, DE

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • Produktempfehlungen personalisieren

      Ihre Vorteile:

      • Empfehlungen basierend auf ihren Interessen
      • Zeitersparnis durch passende Vorschläge

      Mehr informationen zu , , und

      Die ersten personalisierten Empfehlungen erhalten Sie nach zwei bis drei Klicks.

      Sie können diese Zustimmung zu einem späteren Zeitpunkt unproblematisch über die Datenschutz-Einstellungen wieder zurückziehen.

      nach oben

      Ihre Daten werden geladen ...