Clustering Methods for Big Data Analytics
Techniques, Toolboxes and Applications
Springer International Publishing
ISBN 978-3-319-97864-2
Standardpreis
Bibliografische Daten
eBook. PDF
2018
IX, 187 p. 63 illus., 31 illus. in color..
In englischer Sprache
Umfang: 187 S.
Verlag: Springer International Publishing
ISBN: 978-3-319-97864-2
Weiterführende bibliografische Daten
Das Werk ist Teil der Reihe: Unsupervised and Semi-Supervised Learning
Produktbeschreibung
This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation.
Autorinnen und Autoren
Produktsicherheit
Hersteller
Springer Nature Customer Service Center GmbH
ProductSafety@springernature.com