Mondal

How Many Zeroes?

Counting Solutions of Systems of Polynomials via Toric Geometry at Infinity

sofort lieferbar!

64,19 €

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

eBook. PDF

eBook

2021

352 S. XV, 352 p. 88 illus., 81 illus. in color..

In englischer Sprache

Springer Nature Switzerland. ISBN 978-3-030-75174-6

Das Werk ist Teil der Reihe: CMS/CAIMS Books in Mathematics

Produktbeschreibung

This graduate textbook presents an approach through toric geometry to the problem of estimating the isolated solutions (counted with appropriate multiplicity) of n polynomial equations in n variables over an algebraically closed field K. The text collects and synthesizes a number of works on Bernstein's theorem of counting solutions of generic systems, ultimately presenting the theorem, commentary, and extensions in a comprehensive and coherent manner. It begins with Bernstein's original theorem expressing solutions of generic systems in terms of the mixed volume of their Newton polytopes, including complete proofs of its recent extension to affine space and some applications to open problems. The text also applies the developed techniques to derive and generalize Kushnirenko's results on Milnor numbers of hypersurface singularities, which has served as a precursor to the development of toric geometry. Ultimately, the book aims to present material in an elementary format, developing all necessary algebraic geometry to provide a truly accessible overview suitable to a second-year graduate students.

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Autorinnen/Autoren

  • Rezensionen

    Dieses Set enthält folgende Produkte:
      Auch in folgendem Set erhältlich:

      • nach oben

        Ihre Daten werden geladen ...