McIver / Mahabal / Fluke

Machine Learning in Astronomy (IAU S368)

Possibilities and Pitfalls

Jetzt vorbestellen! Wir liefern bei Erscheinen

ca. 123,50 €

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

Buch. Hardcover

2025

200 S.

In englischer Sprache

Cambridge University Press. ISBN 978-1-00-934519-4

Produktbeschreibung

Today's astronomical observatories are generating more data than ever, from surveys to deep images. Machine learning methods can be a powerful tool to harness the full potential of these new observatories, as well as large archives that have accumulated. However, users should beware of common pitfalls, including bias in data sets and overfitting. IAU Symposium 368 addresses graduate students, teachers and professional astronomers who would like to leverage machine learning to unlock these huge volumes of data. Researchers pushing the frontiers of these methods share best practices in applied machine learning. While this volume is focused on astronomy applications, the methodological insights provided are relevant to all data-rich fields. Machine learning novices and expert users will find and benefit from these fresh new insights.

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Autorinnen/Autoren

  • Rezensionen

    Dieses Set enthält folgende Produkte:
      Auch in folgendem Set erhältlich:

      • nach oben

        Ihre Daten werden geladen ...