Computer-Aided and Machine Learning-Driven Drug Design
From Theory to Applications
Springer Nature Switzerland
ISBN 978-3-031-76718-0
Standardpreis
Bibliografische Daten
eBook. PDF
2025
XIII, 559 p. 114 illus., 87 illus. in color..
In englischer Sprache
Umfang: 559 S.
Verlag: Springer Nature Switzerland
ISBN: 978-3-031-76718-0
Weiterführende bibliografische Daten
Das Werk ist Teil der Reihe: Computer-Aided Drug Discovery and Design
Produktbeschreibung
The computer-aided drug design research field comprises several different knowledge areas, and often, researchers are only familiar or experienced with a small fraction of them. Indeed, pharmaceutical industries and large academic groups rely on a broad range of professionals, including chemists, biologists, pharmacists, and computer scientists. In this sense, it is difficult to be an expert in every single CADD approach. Furthermore, there are well-established methods that are constantly revisited, and novel approaches are introduced, such as machine-learning based scoring functions for molecular docking.
This book provides an organized update of the most commonly employed CADD techniques, as well as successful examples of actual applications to develop bioactive compounds/drug candidates. Also includes is a section of case studies that cover certain pharmacological/target classes, focusing on the applications of the previously described methods. This part will especially appeal to professionals who are not as interested in the theoretical aspects of CADD.
This is an ideal book for students, researchers, and industry professionals in the fields of pharmacy, chemistry, biology, bioinformatics, computer sciences, and medicine who are seeking a go-to reference on drug design and medicinal chemistry.
Autorinnen und Autoren
Produktsicherheit
Hersteller
Springer-Verlag GmbH
Tiergartenstr. 17
69121 Heidelberg, DE
ProductSafety@springernature.com