Lutter

Inductive Biases in Machine Learning for Robotics and Control

Springer International Publishing

ISBN 978-3-031-37832-4

Standardpreis


128,39 €

sofort lieferbar!

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

Bibliografische Daten

eBook. PDF

2023

XV, 119 p. 23 illus., 20 illus. in color..

In englischer Sprache

Umfang: 119 S.

Verlag: Springer International Publishing

ISBN: 978-3-031-37832-4

Weiterführende bibliografische Daten

Das Werk ist Teil der Reihe: Springer Tracts in Advanced Robotics

Produktbeschreibung

One important robotics problem is "How can one program a robot to perform a task"? Classical robotics solves this problem by manually engineering modules for state estimation, planning, and control. In contrast, robot learning solely relies on black-box models and data. This book shows that these two approaches of classical engineering and black-box machine learning are not mutually exclusive. To solve tasks with robots, one can transfer insights from classical robotics to deep networks and obtain better learning algorithms for robotics and control. To highlight that incorporating existing knowledge as inductive biases in machine learning algorithms improves performance, this book covers different approaches for learning dynamics models and learning robust control policies. The presented algorithms leverage the knowledge of Newtonian Mechanics, Lagrangian Mechanics as well as the Hamilton-Jacobi-Isaacs differential equation as inductive bias and are evaluated on physical robots.

Autorinnen und Autoren

Produktsicherheit

Hersteller

Springer Nature Customer Service Center GmbH

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • nach oben

      Ihre Daten werden geladen ...