Lin

Reinforcement Learning Methods in Speech and Language Technology

Springer Nature Switzerland

ISBN 978-3-031-53720-2

Standardpreis


93,08 €

sofort lieferbar!

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

auch verfügbar als Buch (Hardcover) für 93,08 €

Bibliografische Daten

eBook. PDF

2024

XVI, 202 p. 47 illus., 28 illus. in color..

In englischer Sprache

Umfang: 202 S.

Verlag: Springer Nature Switzerland

ISBN: 978-3-031-53720-2

Weiterführende bibliografische Daten

Das Werk ist Teil der Reihe: Signals and Communication Technology

auch verfügbar als Buch (Hardcover) für 93,08 €

Produktbeschreibung

This book offers a comprehensive guide to reinforcement learning (RL) and bandits methods, specifically tailored for advancements in speech and language technology. Starting with a foundational overview of RL and bandit methods, the book dives into their practical applications across a wide array of speech and language tasks. Readers will gain insights into how these methods shape solutions in automatic speech recognition (ASR), speaker recognition, diarization, spoken and natural language understanding (SLU/NLU), text-to-speech (TTS) synthesis, natural language generation (NLG), and conversational recommendation systems (CRS). Further, the book delves into cutting-edge developments in large language models (LLMs) and discusses the latest strategies in RL, highlighting the emerging fields of multi-agent systems and transfer learning.

Emphasizing real-world applications, the book provides clear, step-by-step guidance on employing RL and bandit methods to address challenges in speech and language technology. It includes case studies and practical tips that equip readers to apply these methods to their own projects. As a timely and crucial resource, this book is ideal for speech and language researchers, engineers, students, and practitioners eager to enhance the performance of speech and language systems and to innovate with new interactive learning paradigms from an interface design perspective.

  • Provides a comprehensive survey of reinforcement learning methods tailored to speech and language technology;
  • Discusses real-world application studies such as ASR, TTS, large language models, and conversational systems;
  • Covers emerging trends in deep reinforcement learning, multi-agent systems, and transfer learning.

Autorinnen und Autoren

Produktsicherheit

Hersteller

Springer-Verlag GmbH

Tiergartenstr. 17
69121 Heidelberg, DE

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • nach oben

      Ihre Daten werden geladen ...