Li

Deep Learning for Time-series Classification Enhanced by Transfer Learning Based on Sensor Modality Discrimination

Logos

ISBN 978-3-8325-5396-8

Standardpreis


41,00 €

lieferbar, ca. 10 Tage

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

Bibliografische Daten

Fachbuch

Buch. Softcover

2021

In englischer Sprache

Umfang: 158 S.

Format (B x L): 17 x 24 cm

Verlag: Logos

ISBN: 978-3-8325-5396-8

Weiterführende bibliografische Daten

Produktbeschreibung

Progress in hardware development has caused wearable devices to become pervasive in our daily lives. Their ability to passively collect time-series data has led to an increasing overlap between Ubiquitous computing (Ubicomp) and machine learning, making it common to translate an Ubicomp application into a classification problem. This thesis focuses on time-series classification via two main axes: feature extraction and deep transfer learning.

Feature extraction is nowadays mainly divided into two categories: feature engineering and feature extraction based on deep learning. The thesis firstly attempts to verify whether deep feature learning convincingly outperforms feature engineering like for image classification. Transfer learning refers to the transfer of knowledge from a source to a target domain to improve classification performances on the latter. It has shown to consistently enhance deep feature learning for image classification, but remains under investigation for time-series. The thesis secondly proposes a new deep transfer learning approach transferring features learned by sensor modality classification on a source domain containing diverse types of time-series data.

Experiments carried out for various Ubicomp applications (human activity, emotion and pain recognition) show that deep feature learning is not always the best option for time-series feature extraction, and that the proposed deep transfer learning approach can consistently enhance deep feature learning.

Autorinnen und Autoren

Produktsicherheit

Hersteller

Logos Verlag Berlin GmbH

Georg-Knorr-Str. 4, Geb. 10
12681 Berlin, DE

redaktion@logos-verlag.de

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • nach oben

      Ihre Daten werden geladen ...