First-order and Stochastic Optimization Methods for Machine Learning
Springer International Publishing
ISBN 978-3-030-39568-1
Standardpreis
Bibliografische Daten
eBook. PDF
2020
XIII, 582 p. 18 illus., 16 illus. in color..
In englischer Sprache
Umfang: 582 S.
Verlag: Springer International Publishing
ISBN: 978-3-030-39568-1
Weiterführende bibliografische Daten
Das Werk ist Teil der Reihe: Springer Series in the Data Sciences
Produktbeschreibung
This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.
Autorinnen und Autoren
Produktsicherheit
Hersteller
Springer Nature Customer Service Center GmbH
ProductSafety@springernature.com