Kong / Wang

Cross-device Federated Recommendation

Privacy-Preserving Personalization

Springer Nature Singapore

ISBN 9789819632121

Standardpreis


117,69 €

sofort lieferbar!

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

auch verfügbar als Buch (Hardcover) für 128,39 €

Bibliografische Daten

eBook. PDF. Weiches DRM (Wasserzeichen)

2025

XIII, 157 p. 21 illus. in color..

In englischer Sprache

Umfang: 157 S.

Verlag: Springer Nature Singapore

ISBN: 9789819632121

Produktbeschreibung

This book introduces the prevailing domains of recommender systems and cross-device federated learning, highlighting the latest research progress and prospects regarding cross-device federated recommendation. As a privacy-oriented distributed computing paradigm, cross-device federated learning enables collaborative intelligence across multiple devices while ensuring the security of local data. In this context, ubiquitous recommendation services emerge as a crucial application of device-side AI, making a deep exploration of federated recommendation systems highly significant.

This book is self-contained, and each chapter can be comprehended independently. Overall, the book organizes existing efforts in federated recommendation from three different perspectives. The perspective of learning paradigms includes statistical machine learning, deep learning, reinforcement learning, and meta learning, where each has detailed techniques (e.g., different neural building blocks) to present relevant studies. The perspective of privacy computing covers homomorphic encryption, differential privacy, secure multi-party computing, and malicious attacks. More specific encryption and obfuscation techniques, such as randomized response and secret sharing, are involved. The perspective of federated issues discusses communication optimization and fairness perception, which are widely concerned in the cross-device distributed environment. In the end, potential issues and promising directions for future research are identified point by point.

This book is especially suitable for researchers working on the application of recommendation algorithms to the privacy-preserving federated scenario. The target audience includes graduate students, academic researchers, and industrial practitioners who specialize in recommender systems, distributed machine learning, information retrieval, information security, or artificial intelligence.

Autorinnen und Autoren

Produktsicherheit

Hersteller

Libri GmbH

Europaallee 1
36244 Bad Hersfeld, DE

gpsr@libri.de

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • Produktempfehlungen personalisieren

      Ihre Vorteile:

      • Empfehlungen basierend auf ihren Interessen
      • Zeitersparnis durch passende Vorschläge

      Mehr informationen zu , , und

      Die ersten personalisierten Empfehlungen erhalten Sie nach zwei bis drei Klicks.

      Sie können diese Zustimmung zu einem späteren Zeitpunkt unproblematisch über die Datenschutz-Einstellungen wieder zurückziehen.

      nach oben

      Ihre Daten werden geladen ...