Kisiel

Full-Field Structural Imaging Studies of Neuromorphic Devices and their Environments

Springer

ISBN 978-3-032-12106-6

Standardpreis


ca. 181,89 €

Jetzt vorbestellen! Wir liefern bei Erscheinen (Erscheint vsl. Januar 2026)

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

Bibliografische Daten

Fachbuch

Buch. Hardcover

2026

20 s/w-Abbildungen, 20 Farbabbildungen.

Umfang: X, 250 S.

Format (B x L): 15.5 x 23.5 cm

Verlag: Springer

ISBN: 978-3-032-12106-6

Weiterführende bibliografische Daten

Das Werk ist Teil der Reihe: Springer Theses

Produktbeschreibung

This thesis makes substantial progress on the understanding of memory in neuromorphic devices. Neuromorphic systems are a promising path to energy-efficient computers of the future with processing power comparable to that of a supercomputer while consuming the energy equivalent of a meagre light bulb, thanks to their ability to perform computation and store memory at the same site. Firstly, this thesis pinpoints the heart of memory retention in neuromorphic devices based on a prominent VO2 material, which remained a matter of speculation until now. In particular, the thesis uncovers how persistence of metallic phases through electrical switching gives rise to memory effects. Secondly, the author had to exquisitely refine an emerging synchrotron-based diffraction-contrast imaging modality – dark-field x-ray microscopy (DFXM) – for use with systems with weak scattering yield. This allowed the direct observation of switching behavior and the capture of the memory-retention mechanism in real time by correlating images with a resolution approaching 100 nm range with resistance measurements. Moreover, the author reports the discovery that a substrate essential for fabrication of any film based planar devices is an active partner in their functional behavior, which can be further exploited as a new coupling mechanism for building a network of devices, ushering in a new venue of research. This thesis thus elevates DFXM to an indispensable research tool for studying quantum materials and devices alike at modern bright x-ray sources.

Autorinnen und Autoren

Produktsicherheit

Hersteller

Springer Nature Customer Service Center GmbH

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • nach oben

      Ihre Daten werden geladen ...