Kaya / Alhajj / Sailunaz / Day

Social Network Analysis and Mining Applications in Healthcare and Anomaly Detection

Springer Nature Switzerland

ISBN 978-3-031-75204-9

Standardpreis


149,79 €

sofort lieferbar!

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

auch verfügbar als Buch (Hardcover) für 149,79 €

Bibliografische Daten

eBook. PDF

2024

VI, 336 p. 131 illus., 121 illus. in color..

In englischer Sprache

Umfang: 336 S.

Verlag: Springer Nature Switzerland

ISBN: 978-3-031-75204-9

Produktbeschreibung

This book is an excellent source of knowledge for readers interested in the latest developments in social network analysis and mining, particularly with applications in healthcare and anomaly detection. It covers topics such as sensitivity to noise in features, enhancing fraud detection in financial systems, measuring the echo-chamber phenomenon, detecting comorbidity, and evaluating the effectiveness of mitigative and preventative actions on viral spread in small communities using agent-based stochastic simulations. Additionally, it discusses predicting behavior, measuring and identifying influence, analyzing the impact of COVID-19 on various social aspects, and using UNet for handling various skin conditions.

This book helps readers develop their own perspectives on adapting social network concepts to various applications. It also demonstrates how to use various machine learning techniques for tackling challenges in social network analysis and mining.

Autorinnen und Autoren

Produktsicherheit

Hersteller

Springer-Verlag GmbH

Tiergartenstr. 17
69121 Heidelberg, DE

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • Produktempfehlungen personalisieren

      Ihre Vorteile:

      • Empfehlungen basierend auf ihren Interessen
      • Zeitersparnis durch passende Vorschläge

      Mehr informationen zu , , und

      Die ersten personalisierten Empfehlungen erhalten Sie nach zwei bis drei Klicks.

      Sie können diese Zustimmung zu einem späteren Zeitpunkt unproblematisch über die Datenschutz-Einstellungen wieder zurückziehen.

      nach oben

      Ihre Daten werden geladen ...