Kawulok / Smolka / Celebi

Super-Resolution for Remote Sensing

Springer

ISBN 978-3-031-68105-9

Standardpreis


128,39 €

lieferbar ca. 10 Tage als Sonderdruck ohne Rückgaberecht

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

auch verfügbar als eBook (PDF) für 128,39 €

Bibliografische Daten

Fachbuch

Buch. Hardcover

2024

19 s/w-Abbildungen, 125 Farbabbildungen, Bibliographien.

In englischer Sprache

Umfang: xiv, 384 S.

Format (B x L): 15,5 x 23,5 cm

Verlag: Springer

ISBN: 978-3-031-68105-9

Weiterführende bibliografische Daten

Das Werk ist Teil der Reihe: Unsupervised and Semi-Supervised Learning

auch verfügbar als eBook (PDF) für 128,39 €

Produktbeschreibung

This book provides a comprehensive perspective over the landscape of super-resolution techniques developed for and applied to remotely-sensed images. The chapters tackle the most important problems that professionals face when dealing with super-resolution in the context of remote sensing. These are: evaluation procedures to assess the super-resolution quality; benchmark datasets (simulated and real-life); super-resolution for specific data modalities (e.g., panchromatic, multispectral, and hyperspectral images); single-image super-resolution, including generative adversarial networks; multi-image fusion (temporal and/or spectral); real-world super-resolution; and task-driven super-resolution. The book presents the results of several recent surveys on super-resolution specifically for the remote sensing community. - Focuses on reconstruction accuracy compared with ground truth rather than on generating a visually-attractive outcome; - Explains how to apply super-resolution to a variety of image modalities inherent to remote sensing; - Gathers the description of training datasets and benchmarks that are based on remotely-sensed images.

Autorinnen und Autoren

Kundeninformationen

Focuses on reconstruction accuracy compared with ground truth rather than on generating a visually-attractive outcome Explains how to apply super-resolution to a variety of image modalities inherent to remote sensing Gathers the description of training datasets and benchmarks that are based on remotely-sensed images

Produktsicherheit

Hersteller

Springer Nature Customer Service Center GmbH

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • nach oben

      Ihre Daten werden geladen ...