Karchev

Supernova Cosmology for the 21st Century

How I Learnt to Stop Worrying About Likelihoods and Train a Neural Network

Springer

ISBN 978-3-032-15071-4

Standardpreis


ca. 160,49 €

Jetzt vorbestellen! Wir liefern bei Erscheinen (Erscheint vsl. Januar 2026)

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

Bibliografische Daten

Fachbuch

Buch. Hardcover

2026

45 Farbabbildungen.

Format (B x L): 15,5 x 23,5 cm

Verlag: Springer

ISBN: 978-3-032-15071-4

Weiterführende bibliografische Daten

Das Werk ist Teil der Reihe: Springer Theses

Produktbeschreibung

This thesis breaks new ground in supernova type Ia cosmology, developing novel and powerful machine-learning methods scalable to the next generation of astronomical surveys. It demonstrates the feasibility of a fully simulation-based approach to inference, which overcomes the limitations of current methods while increasing the efficiency (and speed) of cosmological inference by orders of magnitude from upcoming large samples of objects. Combining advances in machine learning, numerical modelling, and physical insight, this work provides a much-needed bridge between cosmology and data science. On top of its exceptional methodological impact, the thesis itself is an outstanding product: it is written to the highest scientific and editorial standard, with exceptional quality of figures and graphs, and demonstrating superb command of statistics, machine learning, astrophysics, and cosmology. It is a precious resource for anybody interested in learning, in a concise and accessible yet rigorous manner, the state-of-the-art in supernova type Ia cosmology and modern inference methodologies in general.

Autorinnen und Autoren

Produktsicherheit

Hersteller

Springer Nature Customer Service Center GmbH

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • Produktempfehlungen personalisieren

      Ihre Vorteile:

      • Empfehlungen basierend auf ihren Interessen
      • Zeitersparnis durch passende Vorschläge

      Mehr informationen zu , , und

      Die ersten personalisierten Empfehlungen erhalten Sie nach zwei bis drei Klicks.

      Sie können diese Zustimmung zu einem späteren Zeitpunkt unproblematisch über die Datenschutz-Einstellungen wieder zurückziehen.

      nach oben

      Ihre Daten werden geladen ...