Kar / Roy / Datta

Recommender Systems: Algorithms and their Applications

Springer

ISBN 9789819705375

Standardpreis


181,89 €

lieferbar ca. 10 Tage als Sonderdruck ohne Rückgaberecht

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

auch verfügbar als eBook (PDF) für 181,89 €

Bibliografische Daten

Fachbuch

Buch. Hardcover

2024

21 s/w-Abbildungen, 43 Farbabbildungen.

In englischer Sprache

Umfang: xiv, 165 S.

Format (B x L): 15,5 x 23,5 cm

Verlag: Springer

ISBN: 9789819705375

Weiterführende bibliografische Daten

auch verfügbar als eBook (PDF) für 181,89 €

Produktbeschreibung

The book includes a thorough examination of the many types of algorithms for recommender systems, as well as a comparative analysis of them. It addresses the problem of dealing with the large amounts of data generated by the recommender system. The book also includes two case studies on recommender system applications in healthcare monitoring and military surveillance. It demonstrates how to create attack-resistant and trust-centric recommender systems for sensitive data applications. This book provides a solid foundation for designing recommender systems for use in healthcare and defense.

Autorinnen und Autoren

Kundeninformationen

Studies different types of algorithms for recommender systems along with their comparative analysis Presents case studies of the application of recommender system in healthcare monitoring and military surveillance Shows how to design attack-resistant and trust-centric recommender systems for applications dealing with sensitive data

Produktsicherheit

Hersteller

Springer Nature Customer Service Center GmbH

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • Produktempfehlungen personalisieren

      Ihre Vorteile:

      • Empfehlungen basierend auf ihren Interessen
      • Zeitersparnis durch passende Vorschläge

      Mehr informationen zu , , und

      Die ersten personalisierten Empfehlungen erhalten Sie nach zwei bis drei Klicks.

      Sie können diese Zustimmung zu einem späteren Zeitpunkt unproblematisch über die Datenschutz-Einstellungen wieder zurückziehen.

      nach oben

      Ihre Daten werden geladen ...