Optimization Algorithms for Distributed Machine Learning
Springer Nature Switzerland
ISBN 978-3-031-19067-4
Standardpreis
Bibliografische Daten
eBook. PDF
2022
XIII, 127 p. 40 illus., 38 illus. in color..
In englischer Sprache
Umfang: 127 S.
Verlag: Springer Nature Switzerland
ISBN: 978-3-031-19067-4
Weiterführende bibliografische Daten
Das Werk ist Teil der Reihe: Synthesis Lectures on Learning, Networks, and Algorithms
Produktbeschreibung
This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime.
Autorinnen und Autoren
Produktsicherheit
Hersteller
Springer-Verlag GmbH
Tiergartenstr. 17
69121 Heidelberg, DE
ProductSafety@springernature.com