Johansson

Numerical Python

Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib

3., Third Edition

Apress

ISBN 9798868804120

Standardpreis


35,30 €

lieferbar ca. 10 Tage als Sonderdruck ohne Rückgaberecht

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

auch verfügbar als eBook (PDF) für 37,99 €

Bibliografische Daten

Fachbuch

Buch. Softcover

3., Third Edition. 2024

10 s/w-Abbildungen, 155 Farbabbildungen, Bibliographien.

In englischer Sprache

Umfang: xx, 492 S.

Format (B x L): 17,8 x 25,4 cm

Verlag: Apress

ISBN: 9798868804120

Produktbeschreibung

Learn how to leverage the scientific computing and data analysis capabilities of Python, its standard library, and popular open-source numerical Python packages like NumPy, SymPy, SciPy, matplotlib, and more. This book demonstrates how to work with mathematical modeling and solve problems with numerical, symbolic, and visualization techniques. It explores applications in science, engineering, data analytics, and more. Numerical Python, Third Edition, presents many case study examples of applications in fundamental scientific computing disciplines, as well as in data science and statistics. This fully revised edition, updated for each library's latest version, demonstrates Python's power for rapid development and exploratory computing due to its simple and high-level syntax and many powerful libraries and tools for computation and data analysis. After reading this book, readers will be familiar with many computing techniques, including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling, and machine learning. What You'll Learn - Work with vectors and matrices using NumPy - Review Symbolic computing with SymPy - Plot and visualize data with Matplotlib - Perform data analysis tasks with Pandas and SciPy - Understand statistical modeling and machine learning with statsmodels and scikit-learn - Optimize Python code using Numba and Cython

Autorinnen und Autoren

Kundeninformationen

Revised and updated with examples using the numerical and mathematical modules in Python and its standard library Understand open-source numerical Python packages like NumPy, SciPy, SymPy, matplotlib and more Applications include those from science, engineering, data analysis, and big data computing

Produktsicherheit

Hersteller

Springer Nature Customer Service Center GmbH

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • nach oben

      Ihre Daten werden geladen ...