Deep Learning Classifiers with Memristive Networks
Theory and Applications
Springer International Publishing
ISBN 978-3-030-14524-8
Standardpreis
Bibliografische Daten
eBook. PDF. Weiches DRM (Wasserzeichen)
2019
XIII, 213 p. 124 illus., 102 illus. in color..
In englischer Sprache
Umfang: 213 S.
Verlag: Springer International Publishing
ISBN: 978-3-030-14524-8
Weiterführende bibliografische Daten
Das Werk ist Teil der Reihe: Modeling and Optimization in Science and Technologies
Produktbeschreibung
This book introduces readers to the fundamentals of deep neural network architectures, with a special emphasis on memristor circuits and systems. At first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep neuro-fuzzy networks. It then focuses on the design of these neural networks using memristor crossbar architectures in detail. The book integrates the theory with various applications of neuro-memristive circuits and systems. It provides an introductory tutorial on a range of issues in the design, evaluation techniques, and implementations of different deep neural network architectures with memristors.
Autorinnen und Autoren
Produktsicherheit
Hersteller
Springer Nature Customer Service Center GmbH
ProductSafety@springernature.com
BÜCHER VERSANDKOSTENFREI INNERHALB DEUTSCHLANDS

