Ho

Time Series Forecasting using Machine Learning

Case Studies with R and iForecast

Jetzt vorbestellen! Wir liefern bei Erscheinen (Erscheint vsl. November 2025)

ca. 149,79 €

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

Fachbuch

Buch. Hardcover

2025

x, 205 S. 16 s/w-Abbildungen, 73 Farbabbildungen.

In englischer Sprache

Springer. ISBN 978-3-031-97945-3

Format (B x L): 15,5 x 23,5 cm

Produktbeschreibung

This book uses R package iForecast to conduct financial economic time series forecasting with machine learning methods, especially the generation of dynamic forecasts out-of-sample. Firstly, the machine learning methods cover, for example, enet, random forecast, gbm, and autoML etc., including high binary economic time series. Secondly, I will explain the problem about the generation of recursive forecasts in machine learning framework, under which, there are no covariates, namely, input (independent) variables. This case is pretty common in real decision environment, for example, the decision-making wants 6-month forecasts in the real future, under with, there are no covariates available; therefore, what we can use is recursive, or multistep, forecasts. Besides, macro-econometric modelling uses VAR (vector autoregression) to overcome the problem of multivariate regression, this book offers a Machine-Learning VAR routine, which is found to improve the performance of multistep forecasting.

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Autorinnen/Autoren

  • Rezensionen

    Dieses Set enthält folgende Produkte:
      Auch in folgendem Set erhältlich:

      • nach oben

        Ihre Daten werden geladen ...