Cause Effect Pairs in Machine Learning
Springer Nature Switzerland
ISBN 978-3-030-21810-2
Standardpreis
Bibliografische Daten
eBook. PDF
2019
XVI, 372 p. 122 illus., 90 illus. in color..
In englischer Sprache
Umfang: 372 S.
Verlag: Springer Nature Switzerland
ISBN: 978-3-030-21810-2
Weiterführende bibliografische Daten
Das Werk ist Teil der Reihe: The Springer Series on Challenges in Machine Learning
Produktbeschreibung
This book presents ground-breaking advances in the domain of causal structure learning. The problem of distinguishing cause from effect ("Does altitude cause a change in atmospheric pressure, or vice versa?") is here cast as a binary classification problem, to be tackled by machine learning algorithms. Based on the results of the ChaLearn Cause-Effect Pairs Challenge, this book reveals that the joint distribution of two variables can be scrutinized by machine learning algorithms to reveal the possible existence of a "causal mechanism", in the sense that the values of one variable may have been generated from the values of the other.
Autorinnen und Autoren
Produktsicherheit
Hersteller
Springer-Verlag GmbH
Tiergartenstr. 17
69121 Heidelberg, DE
ProductSafety@springernature.com