Robust Machine Learning
Distributed Methods for Safe AI
Springer
ISBN 9789819706907
Standardpreis
Bibliografische Daten
Fachbuch
Buch. Softcover
2025
1 s/w-Abbildung, 11 Farbabbildungen.
In englischer Sprache
Umfang: xvii, 170 S.
Format (B x L): 15,5 x 23,5 cm
Verlag: Springer
ISBN: 9789819706907
Weiterführende bibliografische Daten
Das Werk ist Teil der Reihe: Machine Learning: Foundations, Methodologies, and Applications
Produktbeschreibung
Studying the robustness of machine learning algorithms is a necessity given the ubiquity of these algorithms in both the private and public sectors. Accordingly, over the past few years, we have witnessed a rapid growth in the number of articles published on the robustness of distributed machine learning algorithms. We believe it is time to provide a clear foundation to this emerging and dynamic field. By gathering the existing knowledge and democratizing the concept of robustness, the book provides the basis for a new generation of reliable and safe machine learning schemes.
In addition to introducing the problem of robustness in modern machine learning algorithms, the book will equip readers with essential skills for designing distributed learning algorithms with enhanced robustness. Moreover, the book provides a foundation for future research in this area.
Autorinnen und Autoren
Produktsicherheit
Hersteller
Springer Nature Customer Service Center GmbH
Europaplatz 3
69115 Heidelberg, DE
ProductSafety@springernature.com
BÜCHER VERSANDKOSTENFREI INNERHALB DEUTSCHLANDS

