Guan / Song / Zhou

Advanced Multimodal Compatibility Modeling and Recommendation

3., Third Edition 2025

Springer Nature Switzerland

ISBN 978-3-031-81048-0

Standardpreis


42,79 €

sofort lieferbar!

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

auch verfügbar als Buch (Hardcover) für 42,79 €

Bibliografische Daten

eBook. PDF

3., Third Edition 2025. 2025

XII, 154 p. 47 illus., 46 illus. in color..

In englischer Sprache

Umfang: 154 S.

Verlag: Springer Nature Switzerland

ISBN: 978-3-031-81048-0

Produktbeschreibung

This Second Edition sheds light on state-of-the-art theories and practices in multimodal compatibility modeling and recommendation, offering comprehensive insights into this evolving field. This topic, and fashion compatibility modeling in particular, has garnered increasing research attention in recent years due to the significant economic impact of e-commerce. Building upon recent research and the prior edition, the authors present a series of graph-learning based multimodal compatibility modeling schemes, all of which have been proven to be effective over several public real-world datasets. This second edition introduces a number of advanced multimodal compatibility modeling and recommendation methods, including category-guided multimodal compatibility modeling and try-on-guided multimodal compatibility modeling. The authors also provide comprehensive solutions, including correlation-oriented graph learning, modality-oriented graph learning, unsupervised disentangled graph learning, partially supervised disentangled graph learning, and metapath-guided heterogeneous graph learning.

In addition, this book:

  • Presents graph-learning based multimodal compatibility models, which have been proven effective over real-world datasets
  • Introduces models for recommendation tasks that require user preference modeling as well as retrieval tasks
  • Highlights research frontiers to inspire future directions for scientists and researchers in this developing field

Autorinnen und Autoren

Produktsicherheit

Hersteller

Springer-Verlag GmbH

Tiergartenstr. 17
69121 Heidelberg, DE

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • Produktempfehlungen personalisieren

      Ihre Vorteile:

      • Empfehlungen basierend auf ihren Interessen
      • Zeitersparnis durch passende Vorschläge

      Mehr informationen zu , , und

      Die ersten personalisierten Empfehlungen erhalten Sie nach zwei bis drei Klicks.

      Sie können diese Zustimmung zu einem späteren Zeitpunkt unproblematisch über die Datenschutz-Einstellungen wieder zurückziehen.

      nach oben

      Ihre Daten werden geladen ...