Diamantopoulos / Symeonidis

Mining Software Engineering Data for Software Reuse

Springer Nature Switzerland

ISBN 978-3-030-30106-4

Standardpreis


96,29 €

sofort lieferbar!

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

Bibliografische Daten

eBook. PDF

2020

XXI, 242 p. 174 illus., 103 illus. in color..

In englischer Sprache

Umfang: 242 S.

Verlag: Springer Nature Switzerland

ISBN: 978-3-030-30106-4

Weiterführende bibliografische Daten

Produktbeschreibung

This monograph discusses software reuse and how it can be applied at different stages of the software development process, on different types of data and at different levels of granularity. Several challenging hypotheses are analyzed and confronted using novel data-driven methodologies, in order to solve problems in requirements elicitation and specification extraction, software design and implementation, as well as software quality assurance.

The book is accompanied by a number of tools, libraries and working prototypes in order to practically illustrate how the phases of the software engineering life cycle can benefit from unlocking the potential of data.

Software engineering researchers, experts, and practitioners can benefit from the various methodologies presented and can better understand how knowledge extracted from software data residing in various repositories can be combined and used to enable effective decision making and save considerable time and effort through software reuse. Mining Software Engineering Data for Software Reuse can also prove handy for graduate-level students in software engineering.

Autorinnen und Autoren

Produktsicherheit

Hersteller

Springer-Verlag GmbH

Tiergartenstr. 17
69121 Heidelberg, DE

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • Produktempfehlungen personalisieren

      Ihre Vorteile:

      • Empfehlungen basierend auf ihren Interessen
      • Zeitersparnis durch passende Vorschläge

      Mehr informationen zu , , und

      Die ersten personalisierten Empfehlungen erhalten Sie nach zwei bis drei Klicks.

      Sie können diese Zustimmung zu einem späteren Zeitpunkt unproblematisch über die Datenschutz-Einstellungen wieder zurückziehen.

      nach oben

      Ihre Daten werden geladen ...