Effective Statistical Learning Methods for Actuaries III
Neural Networks and Extensions
Springer Nature Switzerland
ISBN 978-3-030-25827-6
Standardpreis
Bibliografische Daten
eBook. PDF
2019
XIII, 250 p. 78 illus., 75 illus. in color..
In englischer Sprache
Umfang: 250 S.
Verlag: Springer Nature Switzerland
ISBN: 978-3-030-25827-6
Weiterführende bibliografische Daten
Das Werk ist Teil der Reihe: Springer Actuarial Mathematics and Statistics (R0) Mathematics and Statistics Springer Actuarial Lecture Notes
Produktbeschreibung
Artificial intelligence and neural networks offer a powerful alternative to statistical methods for analyzing data. This book reviews some of the most recent developments in neural networks, with a focus on applications in actuarial sciences and finance.
The third volume of the trilogy simultaneously introduces the relevant tools for developing and analyzing neural networks, in a style that is mathematically rigorous and yet accessible. The authors proceed by successive generalizations, requiring of the reader only a basic knowledge of statistics.
Various topics are covered from feed-forward networks to deep learning, such as Bayesian learning, boosting methods and Long Short Term Memory models. All methods are applied to claims, mortality or time-series forecasting.
This book is written for masters students in the actuarial sciences and for actuaries wishing to update their skills in machine learning.
Autorinnen und Autoren
Produktsicherheit
Hersteller
Springer-Verlag GmbH
Tiergartenstr. 17
69121 Heidelberg, DE
ProductSafety@springernature.com
BÜCHER VERSANDKOSTENFREI INNERHALB DEUTSCHLANDS

