Chung / Efendiev / Hou

Multiscale Model Reduction

Multiscale Finite Element Methods and Their Generalizations

Springer International Publishing

ISBN 978-3-031-20409-8

Standardpreis


149,79 €

sofort lieferbar!

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

Bibliografische Daten

eBook. PDF. Weiches DRM (Wasserzeichen)

2023

XIV, 491 p. 177 illus., 162 illus. in color..

In englischer Sprache

Umfang: 491 S.

Verlag: Springer International Publishing

ISBN: 978-3-031-20409-8

Weiterführende bibliografische Daten

Das Werk ist Teil der Reihe: Applied Mathematical Sciences

Produktbeschreibung

This monograph is devoted to the study of multiscale model reduction methods from the point of view of multiscale finite element methods.

Multiscale numerical methods have become popular tools for modeling processes with multiple scales. These methods allow reducing the degrees of freedom based on local offline computations. Moreover, these methods allow deriving rigorous macroscopic equations for multiscale problems without scale separation and high contrast. Multiscale methods are also used to design efficient solvers.
This book offers a combination of analytical and numerical methods designed for solving multiscale problems. The book mostly focuses on methods that are based on multiscale finite element methods. Both applications and theoretical developments in this field are presented. The book is suitable for graduate students and researchers, who are interested in this topic.

Autorinnen und Autoren

Produktsicherheit

Hersteller

Springer Nature Customer Service Center GmbH

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • Produktempfehlungen personalisieren

      Ihre Vorteile:

      • Empfehlungen basierend auf ihren Interessen
      • Zeitersparnis durch passende Vorschläge

      Mehr informationen zu , , und

      Die ersten personalisierten Empfehlungen erhalten Sie nach zwei bis drei Klicks.

      Sie können diese Zustimmung zu einem späteren Zeitpunkt unproblematisch über die Datenschutz-Einstellungen wieder zurückziehen.

      nach oben

      Ihre Daten werden geladen ...