Cheng / Sun

Knowledge Graph Reasoning

A Neuro-Symbolic Perspective

Springer

ISBN 978-3-031-72007-9

Standardpreis


42,79 €

lieferbar ca. 10 Tage als Sonderdruck ohne Rückgaberecht

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

auch verfügbar als eBook (PDF) für 42,79 €

Bibliografische Daten

Fachbuch

Buch. Hardcover

2024

5 s/w-Abbildungen, 32 Farbabbildungen, Bibliographien.

In englischer Sprache

Umfang: ix, 196 S.

Format (B x L): 16,8 x 24 cm

Verlag: Springer

ISBN: 978-3-031-72007-9

Weiterführende bibliografische Daten

auch verfügbar als eBook (PDF) für 42,79 €

Produktbeschreibung

This book provides a coherent and unifying view for logic and representation learning to contribute to knowledge graph (KG) reasoning and produce better computational tools for integrating both worlds. To this end, logic and deep neural network models are studied together as integrated models of computation. This book is written for readers who are interested in KG reasoning and the new perspective of neuro-symbolic integration and have prior knowledge to neural networks and deep learning. The authors first provide a preliminary introduction to logic and background knowledge closely related to the surveyed techniques such as the introduction of knowledge graph and ontological schema and the technical foundations of first-order logic learning. Reasoning techniques for knowledge graph completion are presented from three perspectives, including: representation learning-based, logical, and neuro-symbolic integration. The book then explores question answering on KGs with specific focus on multi-hop and complex-logic query answering before outlining work that addresses the rule learning problem. The final chapters highlight foundations on ontological schema and introduce its usage in KG before closing with open research questions and a discussion on the potential directions in the future of the field.

Autorinnen und Autoren

Kundeninformationen

Focuses on neural-symbolic integration on KG reasoning to unify the modern representation approaches with traditional symbolic reasoning approaches Provides a principled theoretical view and gives deep insights to connect knowledge graph algorithms into a unified framework Includes many running examples that teach readers to connect applications to theory

Produktsicherheit

Hersteller

Springer Nature Customer Service Center GmbH

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • nach oben

      Ihre Daten werden geladen ...